
Modelling the Fault Correction Process
Proceedings of The Twelfth International Symposium on Software Reliability

Engineering, Hong Kong, 27-30 November, 2001, pp. 185-190.

Norman F. Schneidewind
Naval Postgraduate School

Abstract

In general, software reliability models have focused

on modeling and predicting failure occurrence and have
not given equal priority to modeling the fault correction
process. However, there is a need for fault correction
prediction, because there are important applications that
fault correction modeling and prediction support. These
are the following: predicting whether reliability goals
have been achieved, developing stopping rules for testing,
formulating test strategies, and rationally allocating test
resources. Because these factors are related, we integrate
them in our model. Our modeling approach involves
relating fault correction to failure prediction, with a time
delay between failure detection and fault correction,
represented by a random variable whose distribution
parameters are estimated from observed data.

1. Introduction
 There is a need for greater emphasis on fault
correction modeling and prediction in software reliability
models. This need stems from the fact that the fault
correction process is vital to ensuring high quality
software. If we only address failure prediction, reliability
assessment will be incomplete because it would not
reflect the reliability of the software resulting from fault
correction. In addition to achieving greater accuracy in
reliability prediction, there are by-product benefits
associated with fault correction prediction as follows:

a. Predicting whether reliability goals have been achieved:
If no predictions are made of the number of faults to be
corrected, fault correction rate, and fault correction time,
accurate prediction of reliability cannot be obtained.

b. Providing stopping rules for testing as follows: (1) The
predicted number of remaining faults is less than or equal
to a specified critical value and (2) The fault correction
rate asymptotically approaches zero.

c. Prioritizing tests and allocating test resources: Software
with high values of number of remaining faults and low
fault correction rates are given high priority in testing and
allocation of resources, such as personnel and computer
time.

 Our research hypothesis is that fault correction can be
modeled with a function that has the same form as the
failure detection function but with a random delay that
accounts for fault correction time. In practice, it would be
possible to predict how much delay in the correction
process could be tolerated in order to meet reliability
goals at a given time in test or operation.

Gokhale and colleagues have addressed the issue of
delayed fault correction, when the delay is caused by the
queuing of faults to be removed or by the presence of
latent faults that are difficult to remove [2]. However, this
is not the same as the delay mentioned in section 2.1
below that is the result of a decision by the developing
organization to defer fault correction until the removal of
a fault becomes critical to the operation of the software.
They also model the possibility of imperfect fault repair
(i.e., a fault may not be entirely corrected or a new fault
may be inserted during the repair operation) [1]. They use
a non-homogeneous Markov Chain to represent a non-
homogeneous Poisson process to model failure detection
and fault correction. Their approach is interesting and
provides greater flexibility than analytical models like
ours in a variety of fault correction scenarios. However,
analytical models provide greater visibility of the
relationships between factors that influence the fault
correction process than do complex Markov Chain
diagrams. In addition, their models have not been
validated against real-world projects. In contrast, we have
provided validation tests in Tables 1, 2, and 3 for the
Shuttle.

The delayed S-shaped model has the interesting

characteristic of an initial increasing failure intensity
function, as the test team becomes familiar with the
software, reaches a maximum, and then asymptotically
approaches zero with test time, as it becomes more
difficult to detect failures. Thus, this model gets its name
from a delay in failure detection and not fault correction,
because an assumption of the model is that faults are
corrected immediately without introducing new ones [4].

This paper contains the following sections: 2. Fault
Correction Prediction Model Components, 3.
Applications, 4. Validation, and 5. Summary and
Conclusions

2. Fault Correction Prediction Model
Components
 This section develops the equations of the
components of the fault correction prediction model,
where all references to “time” are elapsed or wall clock
times. These components include the following: failure
and fault correction counts, measures of progress in fault
correction, and stopping rules for testing to achieve
specified reliability goals.

2.1 Fault Correction Delay

Our approach to fault correction prediction is to relate
it to failure prediction, introducing a delay dT, between
failure detection and the completion of fault correction
(i.e., fault correction time). We assume that the rate of
fault correction is proportional to the rate of failure
detection [6]. In other words, we assume that fault
correction keeps up with failure detection, except for the
delay dT. If this assumption is not met in practice, the
model will underestimate the remaining faults in the code.
Thus, the model provides a lower bound on remaining
faults (i.e., the remaining faults would be no less than the
prediction). Using this assumption, the number of faults
corrected at time T, C (T), would have the same form as
the number of failures detected at time T, D (T), but
delayed by the interval dT. Originally, we used a constant
dT, which was estimated from the empirical data [6]. As
pointed out by Xie, this assumption is too restrictive [9].
He suggests modeling the delay as an increasing function
of test time. However, we have not found this to be the
case in either the Shuttle or Goddard Space Flight Center
(GSFC) data, where the fault correction time appears to
be primarily a function of the difficulty of the correction
and independent of when the correction occurs. In order
to improve the model, we use a random variable for the
delay dT. For the Shuttle, this variable was found to be
exponentially distributed with mean fault correction time
1/m, where m is the mean fault correction rate in the
intervals dT. This distribution was confirmed for the
Shuttle, using a sample of 85 fault correction times and
the Kolmogorov-Smirnof test, resulting in p = 0. In
addition, Musa found that failure correction times were
exponentially distributed for 178 failure corrections [5].

We assume that the fault correction starts when

failures are detected. This assumption is related to the
previous assumption of fault correction keeping current
with failure detection. In some cases, a software
developer may choose to postpone a non-critical fault
correction for several releases because it has obtained a
waiver to not make the correction in the current release.
We do not attempt to model this human, case-by-case
decision process in the current model. Our current model
is based on keeping the software updated with corrections
in the current release. In addition, the model does not

include the possibility of introducing a fault when
correcting one; there is no data available for the Shuttle
regarding this factor. These are important factors, but they
are beyond the scope of this effort; these factors will be
addressed in a future effort, involving the use of GSFC
data. Fault mitigation methods, such as fault tolerance,
(the Shuttle has four active computers and a fifth backup)
are reflected in the model as a reduction in the number of
failures from what would be experienced with no fault
tolerance; this result, in turn, decreases the model’s failure
rate parameters and predicted number of failures.

It is well known that various human queue service

times (e.g., supermarket checkout stands) can be
approximated with an exponential distribution [3], and
can be modeled as a birth-death process, where in our
case a birth is a detected failure and a death is a corrected
fault. Musa uses this type of queuing model in his failure
correction process [5].

Due to the great variability in fault correction time

that we have found in both the Shuttle and GSFC data, we
emphasize predicting limits instead of expected values.
For a given mean fault correction rate m, the cumulative
probability distribution F (dT) of the fault correction
delay dT is used to specify upper and lower limits of dT.
These limits are dTU and dTL, corresponding to FU and FL,
respectively. The concept is to bound the delay time, for
example at FU = .9 and FL = .1, and to use these limits in
the fault correction predictions. Thus, when making
predictions, there would be high confidence that actual
values lie within the limits (e.g., probability of .80). The
equation for F (dT) for the exponential distribution, is
given by (1):
F (dT) = 1– exp (- (m) (dT)). (1).

Equation (1) is manipulated to produce equation (2),
which would be used to compute the limits of dT,
applying the specified limit values of F (dT):
dT = (-log (1 – F (dT)))/m. (2).

In the examples in section 3, predictions that require
F (dT) are made using FU and not FL in order to provide
conservative estimates (e.g., the probability is .90 that the
number of corrected faults is less than or equal to its
predicted value or .10 that it exceeds this value). The
reason for this approach is to mitigate against overly
optimistic predictions of number and rate of fault
correction.

2.2 Number of Faults Corrected
 The predicted number of failures detected D (T), for
T > (s –1), is given by equation (3) [8]:
D (T) = (α/β)[1 – exp (-β ((T-s+1)))] + Xs-1, (3)

where the terms have the following definitions:
α : failure rate at the beginning of interval s
β : negative of derivative of failure rate divided
by failure rate (i.e., relative rate of change of failure rate)
T: cumulative test or operational time
s : starting interval for using observed failure
data in parameter estimation
Xs-1: observed failure count in the range [1,s-1].

The parameters α and β are obtained from maximum
likelihood estimation techniques [8]. The parameter s is
used in the optimal selection of failure data that involves
selecting only the most relevant set of failure data for
reliability prediction, with the result of producing more
accurate predictions than would be the case if the entire
set of data were used. The mean squared error criterion,
applied to the differences between predicted and actual
values in the observed range of the failure data, is used for
selecting the optimal value of s. For all equations in which
the term T – s + 1 appears, predictions are made for T > (s
–1) [7, 8].

 Using the assumption of section 2.1 that the number
of corrected faults C (T) has the same form as the number
of detected failures D (T) but with a variable delay dT,
yields equation (4), for T > (s –1), [6]:
C (T) = (α/β) [1- exp (-β ((T-s+1) - dT))] + Cs-1, (4)

where Cs-1 is the observed fault correction count in the
range [1,s-1]. Using equation (2), equation (4) becomes
equation (5), where we would compute the upper and
lower limits of C (T):
C (T) = (α/β) [1- exp (-β (T-s+1+ (log (1 - F (dT)))/m))] + Cs-1
 (5).
2.3 Proportion of Faults Corrected

A measure of progress in fault correction of detected
failures, at time T, is given by the proportion of faults
corrected, as expressed in equation (6):
r (T) = C (T)/D (T) (6).

The ideal goal, of course, is to achieve a value of 1.
However, the achievement of this goal is constrained by
the amount of test time that is economically feasible to
allocate to the software under test. This challenge will be
addressed in section 3, when we consider stopping rules
and prioritization of tests.

2.4 Number of Remaining Faults
 The predicted number of remaining faults, after the
correction process has been operative for time T, is given
by equation (7):
N (T) = D (T) – C (T) (7).

This equation is based on the assumption that all the faults
that exist in the software have been predicted by D (T). A

more conservative prediction is obtained by predicting the
detected failures over the life of the software D (TL), as in
equation (8) [8], and then using equation (9) as the
predicted remaining faults.
D (TL) = �/� + Xs-1 (8).
N (TL) = D (TL) – C (T) (9).

2.5 Time Required To Correct C Faults
 In order to do informed scheduling of test resources,
such as personnel and computer time, it is helpful to
predict how much cumulative test time would be required
to correct a given number of faults during testing. If
equation (4) is solved for T, and C (T) becomes a given
number of faults C to correct, we obtain equation (10), the
predicted time required to correct C faults during testing.
If the delay is exponentially distributed, equation (2)

2.6 Fault Correction Rate

would be substituted for dT in equation (10).

 another useful measure of
rog

log (1 - F (dT)))/m))] (11).

. Applications
ose of model development and

vali

.1 Predicting whether Reliability Goals Have

important to gear the fault correction
oc

= [log[/((C- Cs 1))]] / + (s-1+ dT), for > (C- Cs 1)Tc
and C Cs 1 (10).

� � �� � � � � �

� �

 The fault correction rate is
p ress in fault correction. If the rate is decreasing and
relatively high, it would be indicative of further gains in
fault correction by continuing to test. On the other hand, if
the rate is decreasing towards an asymptotic value, it
would indicate that further testing would produce little
gain in fault correction. The fault correction rate is
obtained by taking the derivative of equation (5) to
produce equation (11):
R (T) = α[exp (-β (T-s+1+ (

3

For the purp
dation, post release failure data from three Shuttle

operational increments were used: OID, OIJ, and OIO. An
operational increment is a software system comprised of
modules and configured from a series of builds to meet
Shuttle mission functional requirements. In addition, fault
correction data, obtained from Shuttle build inspection
files, were used. This section presents several
applications of the model developed in section 2,
involving reliability assessment and strategies for efficient
testing. Because of the space restriction, we are unable to
show the plots referred to in this section.

3
Been Achieved
 Because it is
pr ess to the remaining faults, we specify inequality
(12), which relates N (T), the number of remaining faults
at time T, to RC, the critical value of remaining faults:
N (T) � RC, or N (T) = (D (T) – C (T)) � RC (12).

When equations (3) and (4) are substituted for D (T) and
C (T), respectively, in inequality (12), and assuming that
Xs-1 - Cs-1 � 0 because both Xs-1 and Cs-1 are small in the
range 1,s-1, we obtain inequality (13), the condition for
maximum fault correction delay:
dT � [log[1 + (�/�)(exp (�(T – s + 1)))(RC)]]/� (13).

The parameter RC serves as a reliability threshold. A value
of RC = 1 would be appropriate for safety critical systems.
If RC = 0, dT = 0. This result makes sense because to
achieve zero faults, faults must be corrected as soon as
failures are detected. We feel that inequality (13) is a
significant result, because it says that independent of the
distribution of dT, (13) must be satisfied to meet the
reliability requirement. Thus for a given value of RC, we
are able to specify the maximum fault correction delay dT
that will meet the reliability goal. As a practical matter,
the software engineer can control the development and
maintenance process to constrain the fault correction
delay to (13) by assigning test personnel with the
appropriate skills and by allocating sufficient computer
resources to the tests.

3.2 Stopping Rules for Testing and Prioritizing
Tests and Test Resources

3.2.1 Remaining Faults and Fault Correction Rate.
The number of remaining faults N (T), equation (7), can
be used as a stopping rule for testing. We used an upper
probability limit of .90, meaning that the probability is .90
that N (T) is less than or equal to its ordinate values for a
given test time, or .10 that these values are exceeded. A
plot of multiple OIs would show how to prioritize tests
(i.e., the OI requiring the most test time for a given Rc
would have the highest priority). By priority, we mean the
order of testing and allocation of personnel and computer
resources In addition, the plot would show when to stop
testing (i.e., when the remaining faults equals Rc). Plotting
the fault correction rate R (T), equation (11), would also
provide insight for when to stop testing and for
prioritizing tests. However, we consider N (T) more
useful because it can be used with the critical value of
remaining faults Rc -- a reliability threshold.

3.2.2 Reliability Improvement. In the previous section,
we used absolute quantities (e.g., number of remaining
faults) for developing test strategies and assessing
reliability. In this section, we use the relative quantity p
(T), the proportion of faults remaining at time T, which is
related to r (T) from equation (6), the proportion of faults
corrected at time T, by equation (14):
p (T) = 1 – r (T) = 1 - C (T)/D (T) (14).

We use (14) because two software systems could have
experienced different numbers of failures but have equal

numbers of remaining faults. In this case, the software
with fewer failures would have achieved greater progress
in reliability improvement, as measured by p (T).
However, the use of a threshold seems more intuitive
when applied to N (T). In practice, both measures could
be used.

3.2.3 Test Scheduling. We can anticipate test
requirements and do proactive test scheduling by using
equation (10), the predicted amount of test time required
to correct a given number of faults Tc. In addition, a plot
of multiple software systems would show how the
systems compare in test requirements.

4. Validation

Predictions were made for post release failures and
fault correction, where OID, OIJ, and OIO experienced
13, 7, and 7 post release failures, respectively (post
release failures are sparse for the Shuttle). To make fault
correction predictions comparable across OIs, 7 failures
were used for each OI (the first seven for OID). All data
and predictions are in terms of 30-day intervals. This is
the failure count interval used in previous Shuttle
reliability predictions [8]. Although 7 failures may seem
like a small sample size, it is representative of Shuttle post
release reliability, and despite the small number of
failures, the model is able to predict detected number of
failures D (T) fairly accurately (see Tables 1, 2, and 3).

For the purpose of validation, we ran three scenarios
– one each for OID, OIJ, and OIO – shown in Tables 1, 2,
and 3, respectively. This involved determining from the
collected data when failures occurred and when faults
were corrected. The actual delay between failure
occurrence and fault correction was estimated by
examining, manually, the Shuttle Discrepancy Reports
(i.e., reports that document deviations between specified
and observed software behavior) to determine the
disposition of the fault (i.e., the release and release date
on which the fault was corrected).

The event column of the tables shows when either a

failure occurred or a fault was corrected. In some cases
multiple failures or corrected faults occurred in the same
interval; these occurrences are signified by the plural form
in the event column. The next column shows the test time
T when the events occurred followed by the actual values
of cumulative number of failures detected D (T),
cumulative number of faults corrected C (T), and number
of remaining faults N (T), the difference between D (T)
and C (T). The next section of the tables shows the
predictions for D (T), C (T), and N (T). Notice at the top
of each table the statement about the range of prediction,
which is for T > s-1 (see section 2.2). For example, for

OID in Table 1, s = 7; therefore, the predictions start at
interval T = 7.43.

Table 1: OID (Predictions for T > s-1 = 6)
 Actual Values Predictions Squared Error

Event T D(T) C(T) N(T) D(T) C(T) N(T) D(T) C(T) N(T)
Failure 4.53 1 0 1
Failure 4.83 2 0 2
Failure 5.70 3 0 3
Failure 7.43 4 0 4 3.53 0.30 3.23 0.220 0.09 0.59
Failure 9.77 5 0 5 4.37 1.15 3.22 0.401 1.31 3.17
Corrections 10.86 5 4 1 4.74 4.53 0.22 0.066 0.28 0.62
Correction 10.87 5 5 0 4.75 4.53 0.22 0.065 0.22 0.05
Failure 12.73 6 5 1 5.37 5.16 0.21 0.401 0.03 0.63
Correction 14.60 6 6 0 5.97 5.77 0.20 0.001 0.05 0.04
Failure 17.50 7 6 1 6.85 6.67 0.19 0.022 0.44 0.66
Correction 18.17 7 7 0 7.05 6.87 0.18 0.002 0.02 0.03
 Mean Square Error 0.147 0.31 0.72

Table 2: OIJ (Predictions for T > s-1 = 8)
 Actual Values Predictions Squared Error

Event T D(T) C(T) N(T) D(T) C(T) N(T) D(T) C(T) N(T)
Failure 3.57 1 0 1
Failure 7.03 2 0 2
Failure 7.47 3 0 3
Failure 9.17 4 0 4 3.60 0.28 3.32 0.16 0.08 0.46
Failure 9.23 5 0 5 3.63 0.32 3.32 1.87 0.10 2.83
Corrections 10.60 5 2 3 4.28 2.99 1.29 0.51 0.99 2.92
Failure 13.20 6 2 4 5.38 4.13 1.25 0.38 4.54 7.57
Correction 13.66 6 3 3 5.56 5.32 0.24 0.20 5.36 7.61
Failure 17.17 7 3 4 6.75 6.56 0.20 0.06 12.65 14.47
Correction 24.06 7 4 3 8.47 8.34 0.13 2.16 18.86 8.25
Correction 24.27 7 5 2 8.51 8.39 0.13 2.29 11.47 3.51
Correction 37.43 7 6 1 10.31 10.25 0.06 10.92 18.05 0.89
Correction 37.44 7 7 0 10.31 10.25 0.06 10.93 10.56 0.00
 Mean Square Error 2.95 8.27 4.85

Table 3: OIO (Predictions for T > s-1 = 8)
 Actual Values Predictions Squared Error

Event T D(T) C(T) N(T) D(T) C(T) N(T) D(T) C(T) N(T)
Failure 5.77 1 0 1
Failure 5.90 2 0 2
Failure 7.53 3 0 3
Correction 9.07 3 1 2 3.20 1.06 2.14 0.04 0.00 0.02
Failures 11.47 5 1 4 3.62 1.49 2.13 1.90 0.24 3.50
Corrections 16.80 5 4 1 4.49 3.37 1.11 0.26 0.39 0.01
Failure 24.67 6 4 2 5.60 4.50 1.10 0.16 0.25 0.82
Corrections 29.40 6 6 0 6.18 6.09 0.09 0.03 0.01 0.01
Failure 36.17 7 6 1 6.92 6.84 0.08 0.01 0.71 0.86
Correction 45.77 7 7 0 7.79 7.73 0.06 0.63 0.54 0.00
 Mean Square Error 0.43 0.31 0.75

The last section of the tables shows the squares of the
differences between actual and predicted values for
computing the Mean Square Error (MSE) at the bottom of
the tables. We consider the MSE values for OID and OIO,
Tables 1 and 3, respectively, to be sufficiently low to
validate the predictions. However, we do not reach that
conclusion regarding OIJ in Table 2. The discrepancy
between predicted and actual results is due primarily to
the long delay between failure detection and the start of
fault correction that occurs because the failures were
classified as non-critical on the current release and were
not considered critical for one to three releases in the
future. In contrast, “our model is based on keeping the
software updated with corrections in the current release”
(see section 2.1). For the same reason, we were unable to
validate inequality (13), the maximum fault correction
delay (see section 3.1). This is a lesson learned from the
research that we will further address in section 5.

5. Summary and Conclusions
 It is imperative to include fault correction in
reliability modeling and prediction because without it,
predictions will understate the reliability of the software.
We have developed a number of equations for assessing
the improvement in reliability resulting from fault
correction. In addition, we have shown examples of how
they apply to stopping rules for testing and prioritization
of tests and test resources. We showed that the number of
remaining faults is better than the fault correction rate for
assessing reliability and prioritizing tests because the
former can be used with a reliability threshold to predict
how much testing would be required to meet the
reliability goal.

We found that the most important factor in fault
correction modeling is the delay between failure detection
and fault correction. We modeled this factor, using the
concept of a fault correction queuing service with
exponentially distributed delay – a highly statistically
significant empirical result based on Shuttle data.

We obtained good validation results for two of the

three OIs evaluated. The third OI served as a lesson
learned that we will apply to future work on the NASA
GSFC software projects. We will investigate whether
fault corrections are postponed and, if so, whether we can
model this delay. This will be a challenge because,
whereas failure detection is a machine process, fault
correction is part human process (deciding when to
implement a correction and analyzing how to make the
correction) and part machine process (verifying the
correction on a computer).

References
[1] Swapna S. Gokhale, Teebu Phillip, and Peter N.
Marinos, “A Non-Homogeneous Markov Software
Reliability Model with Imperfect Repair”, Proceedings of
the International Performance and Dependability
Symposium, Urbana-Champaign, IL, 1996, 10 pages.

[2] Swapna S. Gokhale, Peter N. Marinos, Michael R.
Lyu, and Kishor S. Trivedi, “Effect of Repair Policies on
Software Reliability”, Proceedings of Computer
Assurance, Gaithersburg, MD, 1997, 10 pages.

[3] Leonard Kleinrock, Queuing Systems, Volume 1:
Theory, John Wiley & Sons, New York, 1975.

[4] Michael R. Lyu (Editor-in-Chief), Handbook of
Software Reliability Engineering, Computer Society
Press, Los Alamitos, CA and McGraw-Hill, New York,
NY, 1995, pp. 95-98.

[5] John D. Musa, et al, Software Reliability:
Measurement, Prediction, Application, McGraw-Hill,
New York, 1987.

[6] Norman F. Schneidewind, "Analysis of Error
Processes in Computer Software", Proceedings of the
International Conference on Reliable Software, IEEE
Computer Society, 21-23 April 1975, pp. 337-346.

[7] Norman F. Schneidewind, "Software Reliability
Model with Optimal Selection of Failure Data", IEEE
Transactions on Software Engineering, Vol. 19, No. 11,
November 1993, pp. 1095-1104.

[8] Norman F. Schneidewind, "Reliability Modeling for
Safety Critical Software", IEEE Transactions on
Reliability, Vol. 46, No.1, March 1997, pp.88-98.

[9] Min Xie and M. Zhao, “The Schneidewind Software
Reliability Model Revisited”, Proceedings of the Third
International Symposium on Software Reliability
Engineering, IEEE Computer Society Press, Los
Alamitos, CA, Research Triangle Park, NC, October 7-10,
1992, pp. 184-192.

